Grain Growth in Nanocrystalline Copper Thin Films, Investigated by Non-ambient X-ray Diffraction Measurements
نویسندگان
چکیده
The microstructure evolution (crystallite size and microstrain) as well as the residual stress of Cu thin films of various thicknesses (250 nm, 500 nm and 1 ìm) on passivated Si substrates during isochronal annealing was investigated by in-situ X-ray diffraction measurements in the temperature range between 25°C and 250°C. Before annealing, the thermoelastic behaviour was investigated excluding the occurrence of thermally activated relaxation processes occurring above ambient temperature by in-situ stress measurements below ambient temperature. On this basis, above ambient temperature, effects of stress relaxation and emerging secondary stresses (due to grain growth and annihilation of crystal defects, giving rise to a considerable tensile stress contribution development) could be identified for all three layers in the temperature regime between ambient temperature and 250°C. Grain growth in the nanocrystalline thin films started at much lower temperatures as compared to coarse-grained materials. The results were discussed in terms of the effects of different driving forces and grain-boundary mobilities acting in nanocrystalline materials.
منابع مشابه
The effect of saccharin on microstructure and corrosion behavior of nanocrystalline nickel thin films in alkaline solution
In this study the effect of crystallite size reduction and microstructure on the electrochemical corrosion behavior of nanocrystalline nickel (NC Ni) were investigated using Tafel polarization and electrochemical impedance spectroscopy (EIS) measurements in 10 wt.% NaOH. NC Ni coatings were produced by direct current electrodeposition using chloride baths in presence and absence of saccharin as...
متن کاملEvolution of microstructure in nanocrystalline MO-Cu thin films durSng thermal annealing
The evolution of microstructure in MO-Cu thin films during annealing has been investigated by in situ sheet resistance measurements, ex situ x-ray diffraction, and ~PZ situ hot-stage as well as conventional transmission electron microscopy. MO-Cu thin films, deposited on various glass substrates by magnetron sputtering at -30 “C, were supersaturated solid solutions of Cu in MO with a nanocrysta...
متن کاملEffect of Thickness on Properties of Copper Thin Films Growth on Glass by DC Planar Magnetron Sputtering
Copper thin films with nano-scale structure have numerous applications in modern technology. In this work, Cu thin films with different thicknesses from 50–220 nm have been deposited on glass substrate by DC magnetron sputtering technique at room temperature in pure Ar gas. The sputtering time was considered in 4, 8, 12 and 16 min, respectively. The thickness effect on the structural, mo...
متن کاملPreparation of Nanocrystalline CdS Thin Films by a New Chemical Bath Deposition Route for Application in Solar Cells as Antireflection Coatings
Nanocrystalline cadmium sulfide thin films as antireflection materials for solar cells have been prepared by a new chemical solution deposition route in an aqueous medium at 50 °C. as-deposited thin films were studied using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and optical absorption spectra. X-ray diffraction data indicated the formation of hexagonal na...
متن کاملCHARACTERIZATION OF CO-FE MAGNETIC FILMS FABRICATED BY GALVANO-STATIC ELECTRODEPOSITION
In this research, nanocrystalline Co-Fe coatings were electrodeposited on copper substrate. The influence of current density on different properties of the films at two pH levels was investigated. All the coatings showed nodular structure with rougher morphology at higher current densities. Due to anomalous deposition at higher current density, the amount of iron content increased and reached i...
متن کامل